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Abstract-Infra-red radiative transfer in a non-equilibrium mixture of C02-N2 gases is considered. A set 
of equations for vibrational temperatures is obtained. The set is solved by numerical methods for a flat 

gaseous layer and for the constant transitional-rotational temperature across the layer. 

1, INTRODUCTION 

THERE are many physical situations in which radiant 
energy and a polyatomic gas interacting with it are in 
a non-equiiibrium state. This occurs in gas lasers, 
for example, in CO,-lasers [I], and also in terrestrial 
atmospheres [2, 31. In such cases, along with relax- 
ation processes [4-61, of very great importance is radi- 
ation scattering in vibrational-rotational bands with 
redistribution over frequencies [4-63. Here, the 
boundary conditions are also very important because 
they determine the overall balance between the 
absorbed and emitted radiant energy and that pumped 
by external energy sources. For this reason, it is 
necessary to take into account the interactions 
between the gas and the radiant energy of self-emis- 
sion and external radiation. So, for a complete 
description of a non-equilibrium gas, it is necessary 
to have a set of kinetic equations for quantum dis- 
tributional functions of molecules and photons. 

For the first time, such a set was obtained in papers 
[7, 81 by the method of Zubarev’s non-equilibrium 
statistical operator [9]. In many important cases it 
can be significantly simplified. Actually, as a result 
of collisions between molecules, an almost resonant 
exchange by vibrational energy takes place (VV-ex- 
change) which leads to a fast transition to an equilib- 
rium state in separate vibrational modes. Thus, each 
vibrational mode is described by its own vibrational 
temperature 7;(r, t). 

In those cases when the characteristic times of 
macroscopic processes being described exceed the 
time of transition to an equilibrium state in separate 
vibrational modes. such an approach is justifiable [lo, 
111. Moreover, since the time of rotational relaxation 
is very small [l], it can be assumed that rotational 
and translational degrees of freedom are in thermal 
equilibrium and can be described by the common 
temperature T(r, t). This situation is realized in CO,- 
lasers [l] and also in the Earth atmosphere at high 
altitudes [I l]. In this paper, all of the equations are 
presented which are required for a consistent descrip- 

tion of a vibrationally non-equilibrium potyatomic 
gas interacting with its own and external radiation 
112-141, as well as the results of numerical solution 
obtained for a COZ--N2 mixture plane layer in the 
case of free boundaries and a steady translational- 
rotational temperature. 

2. SET OF EQUATIONS FOR VIBRATIONAL 

TEMPERATURES IN THE THEORY OF 

RESONANT SCATTERING IN MIXTURES OF 

NON-EQUILIBRIUM POLYATOMIC GASES 

A consecutive description of the situation, when 
there is a partial disturbance of local the~odynamic 
equilibrium between different vibrational modes in a 
mixture of polyatomic gases interacting with its own 
and external radiation, is possible on the basis of a 
system of equations obtained in refs. [12-141: 

1 ,-c 
+------- 

s s fz(r).E, 0 
dv li;,(v, r) W(v, r') 

p 

X 
ew f-43 r, r')j dr, + 

/r-r'12 

r)W"'(v r')exp(-g(vJ,r')) 

lr-r’l* 
dr’. (1) 

Here, V(r, t) and n(r, t) are the average velocity and 
number of molecules per unit volume of the gas com- 
ponent considered ; E, is the i-th independent mode 
vibrational quantum energy of the given type of mol- 
ecules; c,(r, t) is the average number of the vibrational 
quanta of the i-th molecule mode; T,(r) is the relax- 
ational term which describes the VV’ and VT pro- 
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NOMENCLATURE 

c speed of light, 2.9979 x IO’” cm s-’ n gas density [cm ‘1 

E, energy of i-th mode vibrational quantum 

of molecule [erg] L? 

probability [s ‘1 
vibrational statistical sum at 296 K, 1.088 

s, average number of vibrational quanta in lR:‘/2 matrix element square of vibrational- 

i-th molecule mode rotational transition dipole moment 

9A degeneracy of energy level [erg cm’] 

h Planck’s constant, r space vector [cm] 

h/2n = 1.055 x lO-~27 erg s r, vibrational mode multiplicity 

i index from 1 to 4 designating t time [s] 

symmetrical, deformational, u $” rotational matrix elements 

asymmetric modes of CO, and V average velocity of gas molecules 

vibrational mode of Nz [cm s- ‘1 

1, isotropical coefficient, Z, = I V gas volume [cm ‘1. 

KH Boltzmann’s constant, 
1.3806~lO-‘~ergK~’ 

I number of gas components Greek symbols 

L full number of independent vibrations in rt 3.14 

gas K set of quantum numbers; for CO, 

m mass of CO1 molecule, 7.34 x 10m2j g K= (r,rr~,a,,l,,i). 

cesses ; Y,(r) the external source function ; W,(r) and 
W(v,r) the source functions associated with spon- 

K(v, r) = 3 C’ Cf(v,r) 

taneous radiation of molecules of the given species; 
E. > E, 

K,(v,r) the spectral absorption coefficient of the i-th 
mode of molecules of the species considered ; u(v,r, r’) 
the optical depth of the mixture of gases at the fre- 
quency v along the beam connecting the points r and 
r’ ; V the volume of the emitting non-equilibrium gas. 

According to refs. [12-141, the functions occurring 
in the system of equations (1) have the following 
form : 

K, (v, r)l,(v, n, r,J 

xexp[-cr(v,r,r,)ldn,,, (3) 

(8) 

Here Z,(v, n, r,,) is the spectral intensity of external 

radiation ; N,(r) the generalized Treanor-type func- 
tion [12] ; jR:‘I 2 the squared module of the matrix 
element of the dipole vibrationally-rotational tran- 
sition [15], @z’(v, r) the spectral transition line contour 

described by the Voigt function normalized by unity : 

x (E,,,, - &)IRZ’I 2NI,(r), (4) 

W(v, r) = Gfi 1’ ~,:(v,r)v,1,,(R~12N,,(r), 
5: > E. 

K, (v, r) = z c’ @c(v,r)(E,,,-I?,,), (5) 

E; > E, 

IR:‘I’ EN,,(r)-NN,,(r) 
( h > 

, (6) 

a(v, r, r’) = 
s ( 

K(v,r”) +~‘K(“(v, r”) ds” (7) 
IlJ’l I > Here 

x exp 

K is a set of quantum numbers on which the 
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vibrational-rotational energy of molecules E, de- 
pends ; for example, for CO, K = (o,, v2, u3, 1, j) ; c~ 
is a set complementary to K so that tl = (K,(T) is the 
complete set of quantum numbers that characterize 
the state of the molecules of the given species ; gh. the 
degeneracy taking into account, in particular, nuclear 
degeneration ; E,, the harmonic part of the i-th mode 
vibrational energy of the molecules of a given species ; 
;fi(r,t) the vibrational t~~rature of the i-th 
vibrational mode of a molecule ; Tfr, f) the trans- 
lational-rotational temperature. It should also be 
noted that in formula (7) the integration is performed 
along the beam which connects the points r and r' ; 
K'(v,r) absorption coefficient of the I-th gas com- 
ponent the form of which is similar to equation (8), 
with the superscript I in the sum represented by equa- 
tion (7) takes on the numbers of all the gas com- 
ponents except for the given one for which equations 
(1) are written out. The prime in front of the sums 
means that only the lowest vibrational states are 
summed up in order to eliminate the ascending branch 
[1 I] in the generalized Treanor distribution (9). 

The contribution of resonant scattering of radiation 
from other gas components is taken into account in 
equation (1) by the expression 

K, (v, r) W(‘)(v, r’) 

X 
exp btv, r, r’)] 

,r_r,,2-dr’ (13) 

in which the summation 1’ extends over all the com- 

ponents except for the given one. The functions 
W'(v,r) have the form similar to that in equation 
(5), however, all the quantities here relate to the gas 
component numbered 1. The explicit form of the relax- 
ation term Ti(r) in the most general form in a har- 
monic approximation was suggested in ref. [16] and 
is given in the next section. Note also that for the 
simplicity of formulation the time argument is omitted 
at the functions in all of the formulae. The system of 
equations (1) has a simple physical sense : a complete 
change in the main stored amount of vibrational 
quanta in the i-th mode of the given gas component is 
governed by collisions between the mixture molecules 
and also by the processes of multiple resonant scat- 
tering of photons in vibration-rotational bands 
associated with self-emission and external radiation, 
Here, the scattering processes are accompanied by the 
redistribution of scattered photons in frequencies. 

3. RESONANT RADIATION SCAlTERING IN A 

COrN, MIXTURE FOR A GAS VOLUME 

HAVING THE GEOMETRY OF A PLANE LAYER 

The description of the interaction between a mix- 
ture and the self-emission and external radiation on 
the basis of a system of non-linear equations (1) rep- 
resents a very complex mathematical problem. The 

major problem is that in the vibrational-rotational 
spectrum of polyatomic molecules thousands of tran- 
sitions should be taken into account [15, 171. In 
addition to summation over all the transitions, in the 
system of integrodifferential equations (1) one should 
also perform integration over frequency, and this is 
fraught with great difficulties especially in the case of 
a spatially inhomogeneous gas. However, it is to be 
noticed that the entire volume occupied by the emit- 
ting gas can always be subdivided into regions in each 
of which the translational-rotational temperature can 
be approximately considered constant. By using this 
procedure, it is possible to significantly simplify the 
initial problem. Next, to be explicit, we shall consider 
a mixture of two gases, CO, and N,. This mixture is 
of great interest since in all of sufficiently efficient 
CO,-lasers use is made of nitrogen molecules as an 
additional channel for pumping energy into the asym- 
metric mode of COz molecule vibrations fl]. More- 
over, these are the basic components in modelling the 
terrestrial space 12, 3, Ii]. 

We shall assume that the emitting gas volume has 
the geometry of a plane layer. This geometry is com- 
mon for the upper layers of the atmosphere 12, 3, 18, 
191 and, in the simplest case, it can model the optical 
resonator of a laser system [l]. Thus, assuming that 
the vibrational-rotational bands of molecules are 
described by a set of non-overlapping Doppler lines 
and that the gaseous mixture occupies the space 
bounded by two planes z = 0 and z = zO, with 
T = const., the system of equations (1) can be pre- 
sented in the form 

x ~R~‘(2N,+J + C’ s ” G:,,(z, z’) 
E, > E, * 

x M(cr,,(z,z’))dz’+ __ yJ(z) (14) 
-0(z) 

where 

54??4n(z’) 
G$,(z, z’) = -0 9h.C4d v,3&, ’ iR;l4 

(T,,, (z, 2’) = 

X (16) 

A,’ = Es,, -6, 2&T 
X’I --k$---’ 

d= z 
J( > mc (17) 

+= i&f(<) = s ~,(~exp(-~‘)).exp(-2u2)d~ (18) 
- m 



According to ref. [16]. the relaxation term r,(z) 
in equation (14) describes all the possible relaxation 
channels in the population of vibrational levels on 
collision of molecules in a harmonic approximation 
has the form 

x I’r [E,(I.,+i:y)]“- fi [[;>(I.,+[;(‘)]‘, 
,ri+ I I I 

I 

x n [c;(Y,+E,)]” 1 (20) 
,ri+ I 

Here Z,,,, is the number of collisions of the molecule 
A with the molecules B per unit time. P,, is the prob- 
ability of the complex vibrational transition in the 
system A+B with one collision. Equation (20) 
describes relaxation in a binary mixture of gases 
A(C0,) and B(N:), with only those transitions being 
taken into account which arc due to collisions A and 
B. This corresponds to the cast when the CO, gas is 

a small admixture to N,. Here L is the full number of 
independent vibrations in the gas. For the CO?-N1 
mixture. I, = 4. The arbitrary vibrational state of the 

system A + B is described by a set of vibrational num- 
bers (I‘,. I‘>. , (3, ). Here all the possible relaxation 
channels on collision of A and B have the form [ 161 : 

(r , . . J‘,, ; /‘A + , . r, ) 

Since here polyatomic molecules are modelled by 
a set of harmonic oscillators, the mean numbers of 
vibrational quanta in different modes arc described 

by the formulae 

(21) 

By numbering from I to 4 the symmetric. defor- 
mational, and asymmetric modes of CO? and 
vibration of NZr we shall have: E,/k, = 2000 K. 
E,:k, = 960 K, E,;k, = 3380 K, E,:X, = 3353 K. 
with r, = y2 = rI = 1. rz = 2, since the deformation 
type of vibrations is two-fold degenerate. In numerical 
calculations, use was made of the basic relaxation 
channels in modes I-1 being attributed to the fol- 
lowing processes : 

COz(00"1)+N~+CO~(03'0)+N~ 

C02(00"I)+NN, ---* C02(11'0)+N1 

C02(00”I)+NZ(0) + C02(00”0)+N,( I) 

COz(OO”l)+N2 + C01(02”O)+N1 

COJ IO”(I) + N > + CO,(O2”0) + N,. (22) 

The probabilities of the above proccsscs wcrc taken 

from refs. [2. 31. In calculations, account was also 
taken of the effect of fast exchange by vibrational 
quanta between the symmetric and deformational 
modes of CO, due to Fermi resonance [I. I? 141 

which in quasi-stationary problems leads to the cqui- 
librium of the temperatures T, and T,. In fact, the 
probability of the last process from the six indicated 

m set (22) greatly cxcceds the remaining probabilities 
[16]. According to rcfs. [l2. 141. this leads to ;I situ- 
ation when in CO, molecules the coupled and anti- 
symmetric modes of vibrations with the mean num- 
bers of vibrational quanta J:, = Z:, +i:l and I:; arc 

indcpendcnt. In order to obtain an equation for the 
mean number of vibrational quanta in a coupled 
mode. it is necessary lo multiply equation (14) for 
i = I by 2 and sum up with equation (14) for i = 2: 

consequently, the relaxation term r, has the form: 
r-,(z) = 2*T,(:)+T,(z). In calculations an cqui- 
librium state ofN, was assumed. i.e. T, = T. Thus. the 
population distribution of the vibrational-rotational 
levels in the CO, + N 2 mixture is described in this cast 

by three different temperatures: T, = TI. T,. and T. 
Since a stationary problem without external radiation 
sources with fret escape of radiation through the 
boundaries z = 0 and z = zI, was solved hcrc. it is 

necessary to assume in equations (14) thar Pi:,.?/ = 0 
and $) = 0. The squares of the modules of matrix 
elements (1 1) were calculated with the help of the 
cxprcssion [ 151: 

(R; (2 = (c;~,‘)‘(vy$q~ (23) 

where U;,’ are the rotational matrix elements. The 
vibrational matrix elements in equation (23) can bc 
dctcrmincd with the help of the expression for the lint 

strength [20] : 

whcrc Q, = I .088 is the vibrational statistical sum at 
296 K, y = 1 at 1 # 0, ,y = 2 at I = 0, I, = I is the 
isotropic coefficient, ES the energy of the lower level. 

4. NUMERICAL METHOD FOR SOLVING A 

SYSTEM OF INTEGRAL EQUATIONS THAT 

DESCRIBE RESONANT RADIATION 

SCATTERING IN A MIXTURE OF 

POLYATOMIC GASES 

A system of equations ( 14) for a CO?-N 2 mixlurc at 

a constant translationalProtational temperature was 
solved by the iteration technique. However. this 
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method allows one to obtain a converging sequence 
of iterations only in the cases when the initial trial 
distributions of the vibrational temperatures 

T,(r) = T,(z) = Tz(z) and T,(z) are rather close to 
the unknown exact solutions of system (14). 

At large optical densities all of the vibrational tem- 
peratures are close to the translational--rotational 
temperature because of intense exchange between 
t~nslational. rotational and vibrational degrees of 
freedom of the molecules. Therefore. in this case the 

initial distribution has the form: r,(t.) = T,(z) = T. 
At low optical densities the integral term makes a 
small contribution, one may use the solution of the 
given system without allowance for scattering. How- 
ever, of greatest interest is the distribution of 
vibrational temperatures for the intermediate optical 

densities. For this purpose, use is made of the method 
of parameter fitting. In the given problem, such a 
parameter is the gas density. The whole range of gas 
densities was subdivided into rather small regions, so 
that the solution from the neighbouring node can be 
taken as an initial approximation to solve the system 
ofintegral equations at the given intermediate density. 

The travel along the density was made both from the 
small to large values and in the reverse direction. 
In order to decrease the time of computation of the 

integral term, which describes multiple resonant scat- 
tering, use was made of an approximate fhctorization 
of nuclei G:., (z, -_‘) of system (14). This made it poss- 
iblc to perform the preliminary summation overland 
to introduce several one-dimensional data files the 
number of which is determined by the number of 
different pairs of quanta numbers (I,r). As a result, 
only sumn~ation over ~~ibrational transitions remains 
in solution of the system. 

According to equation (23), the matrix elements 
of vibrational-rotational transitions are factorized. 
Thereafter. in view of the weak dependence of the 
frequency of vibrationalLrotationa1 transition on the 
rotational quantum number, it is possible to write : 

\‘!,..I< = “:,.rj)<i/,; = “(I’/ )(I,) 

and moreover 

g, = gt,/*.‘f, = R,_.,(2.i+1), 1’ = (L.,,1.2,Q). 

Considering the expression for the level energy in 
the CO, molecule [ 157, the population difference has 
the form 

N,< - N,, = 

-.f; i exp i B 
- - - j'(j' f 1) 

KBT 

- $fAj(j+.i.+ 1) 
H 

x exp - -&$ (.j’ + 1) . (2.5) 

The factor at ,I;, in the last expression differs from 
unity only for the P and R branches; it decreases 
monotonically with an increase in j; however, for 
the va1ues.j < 50 it is equal to unity accurate to two 

decimal places. At the same time the contribution 
of rotational lines when j > 50 for translational- 
rotational temperatures being smaller than T= 
1000 K is relatively insignificant. Thus, the factor at 

,fcan be assumed to bc equal to I. Taking equation 
(25), into account, the expression for Q, i and a!_ h at 
a constant (over the layer) translational-rotational 

temperature can be written as 

Cr,< ,<(-_. z’) Tt a,,(=, z’) * 0 ;;” 

G:,(J,z’) 1: G:,(-_.I’)-G;, (26) 

where n is the number of the vibrational transition 

n = {z>,z’; l, 1’1. As a result, the following approxi- 
mate representation of the integral term obtains : 

4?,.,(,,I(z,z’)) = ~G$“M(o,,(z,z’)a;:). (28) 
/I 

Equation (27) allows one to pieliminarily calculate 

the function Q,,,(x) for each pair (1’,1). 
A similar approximation is applicable for the term 

which describes spontaneous emission. 
In the case of numerical integration over z, it is 

necessary to consider the singularity of the function 
M(t) + z when < -+ 0. In order not to lose the accu- 

racy of computations. the integration in the vicinity 
of 2’ = z was performed analytically, since for 
YE (Z--c,Zf$) 

o,,,<(:,:‘) 2 o,,(z)lz’--_I 

the integration in the vicinity of 2’ = 2 yields 

I 

;+i 
G/.,<(z, z’)M(o,,,<(; z’)) dz’ 

I-, 

= 2G,,,(z, z’)rT;; (z)[-- M, (5,.,(z)E) 

+F6,..,(=)M(@h,(l) *C)+Jn] 

where 

I 

+I 

M,(C) = e-“” exp( _ < e-“‘I) dw. 
- I 

Note that tables are available for M(c), as well as 
asymptotics being known [21]. The expression for the 
integral term obtained in the vicinity of the Z’ = z 

point can be factorized with respect to vibrational and 
rotational quantum numbers. This allows the sum- 
mation to be made over the rotational quantum num- 
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FIG. I. Distribution of vibrational temperatures along a FIG. 3. Distribution of vibrational temperatures along a 
plane layer in the coupled and antisymmetric modes of CO2 plane layer in the coupled and antisymmetric modes of CO, 
in a CO,-N, mixture at T = 1000 K, z0 = 10’ m for the Nz in a C02PN2 mixture at T= 1000 K, z0 = 10’ m for the N? 

density equal to 3.45 x IO” cm-‘. density equal to 3.04 x lOI cm- ‘. 

ber. Thus, when solving the system of equations (14) 
the summation only over vibrational transitions 
remains. 

5. RESULTS OF THE COMPUTATIONAL 

EXPERIMENT FOR A CO*--N, MIXTURE 

Figures l-4 present the results of numerical solu- 
tion of a system of equations (14) in a stationary case 
for different gas densities at T= 1000 K and CO2 
concentration equal to 0.03 1%. Here, it is supposed 
that a gaseous mixture fills a volume having the geo- 
metry of a plane layer, with radiation freely emitting 
from the boundaries ; T, and T, are the temperatures 

in the coupled and antisymmetric modes. 

0 20 40 60 80 100 

z [km1 

800 L 
0 20 40 60 80 100 

z [km1 

FIG. 2. Distribution of vibrational temperatures along a FIG. 4. Distribution of vibrational temperatures along a 

plane layer in the coupled and antisymmetric modes of CO, plane layer in the coupled and antisymmetric modes of CO2 

in a CO>-N2 mixture at T = 1000 K, z0 = lo5 m for the N, in a CO,-N, mixture at T = 1000 K, z0 = lo5 m for the Nz 
density equal to 1.20 x lOI cmd3. density equal to 1.0x lOI cm- ‘. 

lOOOr 

The dependence has a smooth monotonous charac- 
ter falling down to the boundaries of the layer. This 
is due to the free escape of radiation through the 
boundaries. At low densities the temperatures in the 
two modes are much smaller than the translational- 
rotational temperature because the emitted photons 
rarely undergo reabsorption. Conversely, at large den- 
sities all the temperatures tend to an equilibrium valve 
as a result of an intensive exchange by energy between 
the degrees of freedom at frequent collisions and 
re-absorptions. 

With variation in the translational-rotational tem- 
perature as a parameter (from 500 to 1000 K) the 
solution of the system of equations (14) did not 
change its form appreciably. 



Radiative transfer in a mixture layer of C02-N2 gases 3381 

Oo--’ 40 50 

z [km1 

FIG, 5. Distribution of vibrational temperatures along a 
plane layer in the coupled and antisymmetric modes of CO1 
in a CO1N, mixture at T = 1000 IS, z0 = 5 x IO4 m for the 

density varying exponentially across the layer. 

Figure 5 presents the solution of system (14) for an 
exponential distribution of mixture density across a 
plane layer. 

In contrast to refs. [2,3] the solutions obtained took 
into account a considerable quantity of vibra- 
tional transitons. The numerical solutions showed 
that the disregarding of weak transitions leads to 
considerable errors in the distribution of vibra- 
tional temperatures (on the order of hundreds of 
degrees). 

Another distinction is due to the fact that the pre- 
sent work used not a two-level model, but rather a 
real multilevel system for a mixture of polyatomic 
gases. 

Computer investigations showed that with specially 
selected parameters for polyatomic molecules (line 
strengths, exchange rates) qualitatively new effects 
can be obtained, such as non-specular distributed 
bistability and a non-monotonous distribution of 
vibrational temperatures, 
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